Давление верхний камера кае джытроник мерс

Система впрыска КЕ-Джетроник. Устройство и принцип действия

Давление верхний камера кае джытроник мерс

Система КЕ-Джетроник ⭐ является модификацией системы К-Джетроник и представлена на рисунке. В своей основе она повторяет конструкцию базовой системы К-Джетроник и не отличается от нее принципом базового дозирования топлива (прогретый двигатель, установившиеся режимы, плавные ускорения).

Рис.

Система впрыска КЕ-Джетроник:
1 – рабочая форсунка; 2 – пусковая форсунка; 3 – дозатор-распределитель; 4 – электрогидравлический регулятор давления; 5 – термовременной выключатель; 6 – датчик температуры; 7 – выключатель дроссельной заслонки; 8 – клапан дополнительной подачи воздуха; 9 – напорный диск; 10 – винт регулировки состава смеси; 11 – потенциометр; 12 – регулятор давления топлива; 13 – электронный блок управления; 14 – накопитель топлива; 15 – топливный фильтр; 16 – топливный насос; 17 – топливный бак

Коррекция состава смеси на остальных режимах отличается от применяемого в базовой системе К-Джетроник принципа изменения давления на верхнюю часть плунжера. В системе КЕ-Джетроник давление на верхнюю часть плунжера постоянно и равно системному (обычно 5…6 кгс/см2).

Коррекция состава смеси осуществляется посредством изменения перепада давления на дозирующих отверстиях за счет изменения давления в нижних камерах дозатора-распределителя.

Количество топлива, поступающего в нижние камеры, определяется положением металлической мембраны так называемого электрогидравлического регулятора давления.

Электрогидравлический регулятор давления представляет собой корпус, прикрепляемый к дозатору-распределителю.

Рис.

Электрогидравлический регулятор давления:
1 – жиклер; 2 – пластина; 3 – катушка; 4 – полюс магнита; 5 – вход топлива; 6 – регулировочный винт

Внутри корпуса располагается пластина с закрепленным на ней магнитопроводом. Пластина может перемещаться в результате воздействия на нее магнитного поля катушки установленной на магнитопроводах.

В зависимости от силы тока поступающего в обмотку катушки и, следовательно, создаваемого при этом магнитного поля, пластина в большей или меньшей степени может перекрывать жиклер подачи топлива из системы, что в свою очередь приводит к изменению давления в нижней части камеры.

Сила тока поступающая в обмотку электрогидравлического регулятора зависит от сигналов ряда датчиков: датчика температуры 6, датчика выключателя дроссельной заслонки 7, потенциометра 11 рычага напорного диска и в отдельных системах датчика λ-зонда.

В зависимости от сигналов датчиков  в обмотку электрогидравлического регулятора поступает ток различной силы от электронного блока управления 13.

Так как на работающем двигателе происходит непрерывное удаление топлива из нижних камер через калиброванное отверстие обратно в бензобак, давление в нижних камерах, а, следовательно, положение диафрагм дифференциальных клапанов и перепад давления на дозирующих отверстиях будет определяться количеством топлива, подаваемого в нижние камеры, т.е., в конечном итоге, положением мембраны.

При пуске холодного двигателя блок управления увеличивает значение тока регулятора до 80…120 мА, что приводит к уменьшению давления в нижних камерах, а следовательно к обогащению топливной смеси, за счет отклонения пластины электрогидравлического регулятора вправо.

Рис.

Принцип работы электрогидравлического регулятора давления

Конкретное значение тока зависит только от сопротивления датчика температуры охлаждающей жидкости. Дополнительное обогащение смеси, так же как и в системе К-Джетроник, осуществляется за счет использования пусковой форсунки управляемой термовыключателем, аналогичным как и для системы К-Джетроник.

После запуска происходит быстрое уменьшение значения тока, протекающего по обмоткам регулятора, до 20…30 мА, а затем постепенное его уменьшение, адекватное времени, прошедшему после начала пуска и уменьшению сопротивления датчика температуры охлаждающей жидкости.

Давление в нижних камерах возрастает, состав смеси приближается к нормальному, за счет отклонения пластины электрогидравлического регулятора влево.

В некоторых системах для прекращения подачи топлива, например при движении накатом, давление в нижней части камеры может увеличиться настолько, что диафрагма полностью перекроет дозирующее отверстие и топливо к рабочим форсункам поступать не будет.

При достижении двигателем температуры 60…80°С значение тока становится равным нулю и электрогидравлический регулятор практически не оказывает влияния на работу системы (за исключением систем с λ-регулированием).

Для улучшения динамических качеств автомобиля при движении на непрогретом двигателе в системе КЕ-Джетроник обеспечивается дополнительное обогащение смеси, зависящее от скорости открытия дроссельной заслонки, а точнее от скорости перемещения напорного диска расходомера.

Это достигается кратковременным увеличением на 5…30 мА тока через обмотки электрогидравлического регулятора. Величина тока определяется блоком управления на основании величины сопротивления датчика температуры охлаждающей жидкости и скорости изменения выходного напряжения датчика положения напорного диска расходомера.

Этот датчик представляет собой потенциометр и закрепляется на оси рычага напорного диска 11.

Переход на мощностной состав смеси при движении с полностью открытой дроссельной заслонкой также осуществляется увеличением тока регулятора, а разрешающим сигналом для блока является замыкание контактов полной нагрузки датчика выключателя дроссельной заслонки 7.

Электрогидравлический регулятор выполняет также функцию отсечки подачи топлива при торможении двигателем (режим принудительного холостого хода) и ограничении частоты вращения коленчатого вала.

В обоих случаях блок управления изменяет полярность тока, подаваемого на регулятор.

Диафрагма регулятора отклоняется вправо, давление топлива в нижних камерах возрастает, что приводит к закрытию дифференциальных клапанов и отсечке подачи топлива к форсункам.

Для стабилизации холостого хода и подачи дополнительного воздуха при пуске холодного двигателя в системах КЕ-Джетроник используется клапан дополнительной подачи воздуха.

Рис.

Клапан дополнительной подачи воздуха (стабилизации холостого хода):
1 – вращающаяся заслонка; 2 – постоянный магнит; 3 – якорь с двумя обмотками

Клапан дополнительной подачи воздуха, представляет собой поворотную заслонку, связанную с якорем. Якорь состоит из двух обмоток, которые в зависимости от подаваемого напряжения создают магнитное поле, взаимодействующее с постоянными магнитами.

Величину напряжения определяет блок управления на основании информации, поступающей от датчиков. При этом, в зависимости от подаваемого напряжения якорь вращается в ту или иную сторону, открывая или закрывая заслонку.

Количество воздуха, поступаемого в цилиндры двигателя, минуя дроссельную заслонку, изменяется, что позволяет поддерживать более стабильную частоту вращения коленчатого вала двигателя.

Принцип работы клапана показан на рисунке.

Рис.

Принцип работы клапана дополнительной подачи воздуха (стабилизации холостого хода):
а – увеличение частоты вращения коленчатого вала; б – снижение частоты вращения коленчатого вала

Если частота вращения коленчатого вала находится ниже или выше пределов заданных значений 800…900 об/мин блок управления изменяет интервалы подачи в якорные обмотки.

При уменьшении частоты вращения ниже 800…900 об/мин интервалы подачи напряжения в первую обмотку уменьшаются, а во вторую увеличиваются, что приводит к повороту якоря в правую сторону и открытию клапана.

Частота вращения коленчатого вала при этом увеличивается, вследствие увеличения подачи воздуха и более высокого положения плунжера, а значит увеличения подачи топлива к форсункам.

Если частота вращения коленчатого вала находится выше пределов заданных значений 800…900 об/мин блок управления увеличивает интервалы подачи напряжения в первую обмотку, а во вторую уменьшает, что приводит к повороту якоря в левую сторону и закрытию клапана. Частота вращения коленчатого вала при этом уменьшается, вследствие уменьшения подачи воздуха и более низкого положения плунжера, а значит уменьшения подачи топлива к форсункам.

Источник: https://ustroistvo-avtomobilya.ru/sistemy-vpryska/ustrojstvo-i-printsip-dejstviya-sistemy-vpry-ska-ke-dzhetronik/

Основные аспекты ремонта систем впрыска K и KE-Jetronic

Давление верхний камера кае джытроник мерс

Предназначение устройства KE-Jetronic заключается в обеспечении стабильного впрыска топлива. Использование подобных систем началось еще в 70-х годах прошлого века, однако популярность устройств на отечественном рынке возросла не так давно. Подробнее о принципе действия и возможных неисправностях системы вы сможете узнать из этой стать.

Начнем с принципа функционирования. Как сказано выше, система KE-Jetronic позволяет обеспечить наиболее стабильный впрыск за счет дозаторного управления подачи топлива в непрерывном цикле.

Воздушный поток попадает в систему с улицы, проходя через воздушный фильтрующий элемент. Попадая в фильтр, воздух очищается от пыли, после чего направляется в воздушный расходомер.

В результате давления производится регулировка объема топливной смеси и ее дозировка.

После этого уже очищенный воздушный поток идет на заслонку дроссельного узла, при этом ее открытие регулируется путем нажатия на педаль газа. Далее воздух поступает во впускные магистрали для разбрызгивания смеси. Что касается непосредственно топлива, то оно передается из бака в двигатель благодаря работающему насосу под давление.

Параметр давления для нормальной работы мотора должен составлять не меньше 1.5 бар. Далее, горючее передается в аккумулятор давления, а отсюда — через фильтрующий компонент на дозатор. Последний, в свою очередь, уже настроен воздушным потоком благодаря корректору.

Схема функционирования системы KE-Jetronic

После этого по отдельным магистралям бензин передается на форсунки, при этом дозировка осуществляется дросселем. Замер объема воздушного потока осуществляется благодаря специальному девайсу — расходомеру.

Расходомер вместе с дозатором является собой один блок, эта система зовется регулятором состава горючей смеси. Здесь же, внутри конструкции, располагается распределительное устройство — ротаметр.

Сам ротаметр может отклоняться под воздействием воздуха, который перемещается по магистралям.

Устройство обладает механической связью и регулируется благодаря рычагам с золотником. Поскольку узел перемещается вверх, он должен пропускать незначительную часть топлива, передающегося через дифференциальные клапаны на форсунки мотора.

Последние, в свою очередь, осуществляют передачу готовой смеси на цилиндры. Поскольку температура воздуха снаружи может быть разной, условия функционирования агрегата в целом могут изменяться с учетом этого показателя.

Системы KE-Jetronic оснащаются вспомогательным механизмом — регуляторным устройством давления.

Чтобы произвести регулировку оборотов силового агрегата при движении на холостых оборотах, применяется специальный клапан, который, в свою очередь, регулирует положение дросселя. Помимо этого, для обеспечения более стабильного пуска двигателя используется еще одна вспомогательная форсунка, управляющаяся термическим реле.

В данном случае продолжительность ее открытого положения полностью зависит от температуры силового агрегата. Когда двигатель запускается, бензин одновременно начинает поступать на все составляющие элементы системы и в конечном итоге он попадает в золотник.

Посредством воздействия силы топливо поднимается и попадает в узел, обеспечивающий регулировку.

Составляющие элементы системы

На транспортных средствах с силовыми агрегатами, оборудованными трехкомпонентыми каталитическими нейтрализаторами система может быть дополнена некоторыми вспомогательными элементами.

В частности, речь идет о:

  • контроллере уровня кислорода или лямбда-зонде;
  • управляющим механизмом;
  • специальным дроссельным устройством переменного типа, вместо него может использоваться тактовый клапан;
  • регуляторе положения дросселя.

Помимо этого, в узлы KE-Jetronic могут быть добавлены изменения, касающиеся устройства регулировки качества горючей смеси. В целом узел управляется электроникой, то есть для него предусмотрены отдельные «мозги».

Возможные неисправности и диагностика

Установка узла допускается на многие автомобили, в том числе Volkswagen, Mercedes, Audi 200 и другие модели машин.

Поскольку сама по себе система имеет достаточно сложную конструкцию, некоторые автовладельцы периодически сталкиваются с определенными неполадками в ее работе.

Иногда ликвидация поломок возможна только путем ремонта, а в некоторых случаях от неисправностей можно избавиться путем настройки узла (автор видео — v_i_t_a_l_y).

Одна из наиболее распространенных поломок — силовой агрегат не запускается или запускается с большим трудом.

В этом случае проблема может заключаться в работоспособности нескольких составных элементов устройства, поскольку при запуске мотора работают почти все механизмы.

Так как само по себе система сложная, для ее диагностики ремонта нужны квалифицированные спецы, тем более, что для осуществления этой задачи понадобится соответствующее оборудование.

Если запуск ДВС не производится, то в первую очередь нужно обратить внимание на такие элементы:

  • узел питания силового агрегата;
  • устройство для регулировки давления;
  • механизм для регулировки управляющего давления;
  • форсунки впрыска, а также пусковую форсунку;
  • контроллер температуры антифриза;
  • проверить узел регулировки дросселя;
  • также не лишним будет произвести диагностику затяжки форсунок.

Что касается диагностики, то в первую очередь речь идет о системе питания. Этот узел включает в себя топливный бак, магистраль для подачи горючего, бензонасос, аккумуляторное устройство давления, а также фильтрующий элемент.

Выход из строя одной из составных частей узла приведет к тому, что запустить мотор будет невозможно или ДВС запустится, но с трудом. Разумеется, необходимо убедиться в том, что в системе есть горючее, для этого демонтируется шланг выходного штуцера.

В том случае, если в авто установлен встроенный контроллер давления горючего, то следует произвести диагностику его показателей (автор видео — v_i_t_a_l_y).

В принципе для ремонта любых неисправностей узла с самого начала следует замерить параметр давлений на всех составляющих элементах, не лишним будет произвести диагностику их герметичности.

В том случае, если горючее в системе отсутствует, то вероятнее всего, из строя вышел именно насос. Если же топливо в аккумуляторе есть, но давление очень слабое, то нужно произвести диагностику герметичности, а также проверить работоспособность фильтра.

Фильтрующий элемент необходимо периодически менять, поскольку сетка забывается достаточно быстро.

Чтобы убедиться в том, что система герметична, понадобится временно увеличить давление. Для выполнения этой задачи потребуется манометр с вентилем, а также патрубки со специальным штуцерами.

Манометр монтируется в разрыв узла от нижних камер непосредственно до форсунок. После этого заводится мотор и глушится он только через полчаса, а затем производится замер давления — этот показатель должен быть не менее 2.5 кг/см2.

В том случае, если полученные показания будут другими, понадобится произвести диагностику реле, а также регулятора.

Если мотор в принципе не заводится, то необходимо будет принудительно активировать работу насоса, чтобы сделать это, нужно замкнуть контакты реле. При этом сам манометр необходимо подключить в разрыв системы перед регулятором. Полученные параметры должны составлять от 5.3 до 5.7 кг/см2.

В том случае, если показатели будут более низкими, то нужно проверить герметичность, а если узел нормально герметичен, то производится диагностика магистрали.

Вполне возможно, что топливная магистраль просто забилась, но не лишним будет опять же проверить аккумулятор, бензонасос и фильтрующий компонент.

Так как эти элементы системы по своей конструкции являются не разборными, в случае их выхода из строя решить проблему поможет только замена.

Еще один тип неисправности — мотор работает нестабильно или не запускается на горячую. В этом случае производится диагностика:

  • расходомера;
  • электрогидравлического регулятора, если он есть, если нет — то механического устройства;
  • блока управления.

Недостаток системы — это ее сложность и расход бензина.

Извините, в настоящее время нет доступных опросов.

«Регулировка системы в домашних условиях»

Подробнее о том, как производится регулировка и как правильно настраивать узел, вы сможете узнать из видео ниже (автор — v_i_t_a_l_y).

Источник: https://labavto.com/elektronika/auxiliary/k-i-ke-jetronic/

Система распределенного впрыска KE-Jetronic

Давление верхний камера кае джытроник мерс

Система распределенного впрыска KЕ-Jetronic является механической системой непрерывного впрыска топлива с электронным управлением качественным составом топливно-воздушной смеси.

Конструктивно система KЕ-Jetronic построена на основе системы K-Jetronic. Для реализации электронного управления впрыском в систему дополнительно включены электрогидравлический регулятор давления. мембранный регулятор давления, расходомер воздуха с потенциометрическим датчиком. Электронное управление обеспечивают входные датчики и блок управления.

Электрогидравлический регулятор давления предназначен для обеспечения качественного состава топливно-воздушной смеси. В системе KЕ-Jetronic электрогидравлический регулятор давления устанавливается вместо регулятора управляющего давления.

Регулятор давления представляет собой электроуправляемый клапан, который регулирует величину управляющего (подпорного) давления.

В отличии от системы K-Jetronic управляющее давление подводится не к плунжеру, а к дифференциальным клапанам дозатора-распределителя.

Электронный блок управления преобразует электрические сигналы входных датчиков в управляющее воздействие на исполнительные устройства, в качестве которых выступают электрогидравлический регулятор давления, пусковая форсунка, клапан добавочного воздуха, клапан системы улавливания паров бензина.

Мембранный регулятор давления служит для поддержания требуемого рабочего давления в дозаторе-распределителе. Он устанавливается в возвратной магистрали системы.

Расходомер воздуха обеспечивает количественное регулирование состава топливно-воздушной смеси. В приводе расходомера установлен потенциометрический датчик, который фиксирует величину поворота напорного диска.

Перемещение потенциометра на определенный угол воспринимается электронным блоком управления как изменение нагрузки двигателя. Расходомер с потенциометрическим датчиком расширяет область применения мембранного регулятора давления.

Входные датчики фиксируют текущее состояние работы двигателя. На разных типах двигателей может устанавливаться от 4 до 11 входных датчиков.

К примеру на автомобиле Audi-80 устанавливались датчики температуры охлаждающей жидкости, положения дроссельной заслонки, нагрузки двигателя (потенциометр расходомера), частоты вращения коленчатого вала двигателя, высоты над уровнем моря, концентрации кислорода, режима холостого хода.

Принцип действия системы KЕ-Jetronic

При запуске холодного двигателя для быстрого прогрева и устойчивой работы система обеспеивает образование обогащенной топливно-воздушной смеси.

На основании сигнала датчика температуры охлаждающей жидкости электронный блок управления закрывает клапан электрогидравлического регулятора давления. Подпорное давление в нижних полостях дифференциальных клапанов дозатора-распределителя уменьшается.

Верхние полости дифференциальных клапанов увеличиваются и к форсункам впрыска поступает больше топлива. Смесь становиться обогащенной.

При постоянной частоте вращения коленчатого вала двигателя электрогидравлический регулятор давления не работает (биметаллическая пластина с клапаном находится в среднем положении). Связь “расходомер воздуха – плунжер дозатора-распределителя” обеспечивает образование стехиометрической топливно-воздушной смеси.

При резком открытии дроссельной заслонки происходит обогащение топливно-воздушной смеси. Система рассматривает резкое открытие заслонки как потребность в максимальной мощности.

Сигналы от датчика положения дроссельной заслонки и потенциометра расходомера воздуха поступают в электронный блок управления, который активизирует электрогидравлический регулятор давления.

Клапан регулятора закрывается, подпорное давление уменьшается, подача топлива к форсункам увеличивается, смесь обогащается.

При торможении двигателем, наоборот, образуется обедненная топливно-воздушная смесь. По команде электронного блока управления клапан электрогидравлического регулятора открывается, подпорное давление в нижних камерах дифференциальных клапанов увеличивается, объем верхних камер дифференциальных клапанов уменьшается, соответственно подача топлива к форсункам уменьшается, смесь обедняется.

При температуре ниже 10°С  происходит срабатывание пусковой форсунки и клапана добавочного воздуха.

Дальнейшая работа двигателя осуществляется по совокупности сигналов входных датчиков.

по теме

Связанные темы

Впускная система

Топливная система

Неисправности системы KE-Jetronic

Новые материалы

Активные опоры двигателя ставят, как правило, попарно Система динамического рулевого управления на волновой передаче Электропривод двери багажника можно установить самому Концерн Volkswagen разработал систему маневра с прицепом Внутреннее освещение автомобиля является отдельной системой

Популярное

Volkswagen поставил на роботизированную коробку передач Вакуумный усилитель тормозов облегчает работу тормозной системы В ряде случаев система курсовой устойчивости незаменима Вариатор уверенно вытесняет другие автоматические коробки передач С 2009 года применение сажевого фильтра в дизельных двигателях обязательно

Источник: http://systemsauto.ru/feeding/ke_jetronic.html

Настройка КЕ Джетроник (KE Jetronic) М103 W124 — logbook Mercedes E-class 1986 on DRIVE2

Давление верхний камера кае джытроник мерс

Мне кажеться, каждый владелец КЕ Джетроник, при воспоминании о настройке этой системы, невольно вздрагивает.

При покупке машины, система была настроена нормально, но машина совершенно не ехала. ПО заверениям предыдущего хозяина, её накрутили для экономии топлива.

К сожалению, полной, правильной и пошаговой инструкции по настройке КЕ так, чтоб это все было в метсе, я не нашел. Толи никто не хочет делиться тонкостями, толи не вкурсе о них.

Постараюсь описать немного путь, который я прошел при настройке данной системы у себя. Не факт, что все настроенно правильно, и система работает как должна, но при текущей настройке машина едет намного лучше.

И так, как написано во всех мануалах, КЕ — это в первую очередь настройка механическо гидравлической части системы, и лишь потом настройка электрики.

Первое, и самое основное, что надо проверить — это давление системы.Сначала надо померять системное давление (в верхней камере дозатора) — должно быть от 5,3 до 5,7 барУ меня все ок, давление 5,5 бар.Далее сделал замер налива с бензонасоса. За 50 сек должно налить не менее 1литра бензина.

У меня вышло за 32 секунды полная полтаралитровая бутылка. Значит с бензонасосом и фильтром все ок.

Дальше начал регулировать дифф давление(управляющее) через ЭГРД. Регулируеться со снятой фишкой. Разница давлений с системным должна быть в пределах 0,3 — 0,45 бар. Идеальным считается 0,37бар. Отрегулировал свой ЭГРД на 5.1 бар.

Также проверил слив с дозатора( Трубка между ЭГРД и Трубкой подачи топлива с бензобака). За 1 минуту слив должен быть от 130 до 150 мл. У меня 140. Значит сливной канал дозатора в норме.

Далее проверям, не протекает ли каналы дозатора и свободный ход лопаты. Свободный ход ломаты Регулируеться винтом СО. При включенном бензонасосе из каналов дозатора не должно поступать топливо. Для проверки снял трубки дозатора и включил бензонасос. Все ок. Также должен быть свободный ход лопаты от 1,5 до 5 мм. Отмеряеться на глаз по задней стенке дозатора, где расположена лопата.

Следующий замер — эт налив топливабез форсунок. для М103 3л налив должен быть 170 — 180 мл за 1 минуту при полном нажатии лопаты. Изначально налив был в пределах 150 мл. Регулировал подстречными винтами в дозаторе. Добился налива в 170мл. Разница по цилиндрам должна быть не более 3-5%. Добился налива в 170мл.

Zoom

почему то все в рзавчине от винтов

Zoom

нужно все промыть

Zoom

налив

После этого проверяем форсунки. Форсунки не должны течь при закрытой лопате и должны “петь” при открытии. Также “на глаз” проверил распыл. Не должно быть струек или направленности бензина. Форсунки должны распылять в облако.

Мои форсунки не “пели”, если после установки на трубку постепенно нажимать на дозатор, но вот если один раз нажать до конца на дозатор, отпустить и попробовать снова — все начинали петь.
Все форсунки распыляли достаточно хорошо, 2 из них распяляли прям идеально, остальные с небольшой погрешностью. На малом открытии дозатора просматривались струки.

Дальше сделал замер налива с форсунками. Сколько точно они должны наливать я не помню, но главное что б небыло разницы по цилиндрам. После замера все ок. прям удивился сам.

На этом проверка гидравлической части закончена.

Проверяем электронную составляющую КЕ.Проверил сопротивление ЭГРД — идеал 19.5Ом +- 1,5Ом. проверил свой- 19,1Ом. С ним все ок, тем более что поддаеться регулировке.

Подключем вольтметр последовательнона плюс ЭГРД (контакт. который ближе к морде авто). На прогретом авто ток должен быть около 0А.

Устанавливаеться винтом СО. После установки значения нужно проверить показания на 2500 оборотов. Должно быть в районе 5,5А. Если больше или меньше — Регулируем ЭГРД (поворот на 1/8 оборота или меньше. в зависимости от показаний) и снова винтом СО ловим 0А и проверяем на оборотах.

И так пока не добьемся нужных показаний.

Финальная стадия — это настройка Потенциометра. Подключаем плюсовой контакт вольтметра на среднюю ногу, минус — на массу мотора. Надо привести ХХ до 750 оборотов и двигая потенциометр добиться 0.68В. Перед этим следует померять опорное напряжение потенциометра и в зависимости от него подобрать Напряжение потенциометра.
Вот в принцыпе и все, что надо сделать.

У меня еще была проблема с хх оборотами. они были около 500 об/мин и неподнимались при прогреве. Связано это было с заклинившим клапаном ХХ. Его просто снял и хорошенько промыл карбклинером и вд40 и расшевелил его подключив напрямую к аккумулятору.

Также, хотел бы отметить весьма интересный момент, о котором ранее не читал. У меня 3 одинаковых дозатора( для м103 они все одинаковые). Разница была только в контактной группе расходомера. На одном у меня 2 широких уса, а на других двух 1 узкий и 1 широкий. Также у меня несколько потенциометров.

Выбрал наиболее новый, без малейших затертостей и решил проверить, как реагирует потенциометр на отклонение лопаты. Интересный момент. что на всех расходомерах показания были разные. На одном были резкие скачки, провалы, на втром более ровные показания, с меньшими провалами. и на третем вообще без провалов, при том что потенциометр везде одинаковый.

Неожидал такого поведения, и это было для меня прям открытием. Так что не всегда проблема в потенциометре.

Zoom

Зоопарк из расходомеров

Также неплохо проверить и остальные части системы, такие как пусковая форсунка, ДТОЖ, Катушка зажигания, концевик ХХ, Свечи, трамблер, датчик ДЗ и т.д. Все это было проверено или заменено ранее.

Единственно что осталось — так это обновить моторную косу, так как она в печальном состоянии, но к сожалению не могу найти точной схемы по моему мотру с моими мозгами( так было несколько вариантов проводки)

Проверено на работоспособность:— Датчик ДПЗ— Концевик ХХ— Регулятор ХХ— ДТОЖ— Датчик температуры для приборки— Заменены свечи— Проверен трамблер— проверены ВВП— реле перегрузки

-реле бензонасоса

Надо проверить:— ВВ катушку— комуатор— ДП коленвала

— Датчик температуры входного воздуха

Системное давление — 5,5 барДифференциальное давление — 5,1барЗамер налива бензина за 32 секунды — 1,5лСлив с дозатора за 60 сек — 140 млНалив за 1 минуту — 170млГайка буксы утоплена на 0,6мм

Потенциометр выставлен на 0,68В

По итогу — мерс поехал веселее, намного веселее, но, как мне кажеться всеравно не так, как должен. Хз что еще может быть не так. (( И рад и расстроен одновременно.

Материалы, которые использовал для получения информации:
www..com/channel/UCGPpytBPsBhcNi8_q1adwBQ
www..com/channel/UCZWVVYs_kE4JzpOD_AL6Yqg

Ну и море форумов.

Price tag: 700 UAH Mileage: 454000 km

Источник: https://www.drive2.com/l/503843507920699494/

ПроДавление
Добавить комментарий